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Non-stationary conjugate free-convective heat
transfer in horizontal cylindrical coaxial channels
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Abstract—A. conjugate problem of natural convection in a horizontal annulus is solved numerically; a
comparison of the solution with non-conjugate problems is given ; the effect of walls on heat transfer in a
channel is shown.

1. INTRODUCTION

Tue sTUDY of heat transfer in coaxial cylindrical chan-
nels is of great importance for calculation of different
heat exchangers, apparatus for chemical engineering
technology, plasmatrons, plasma accelerators, radio-
electronic devices, cryogenic power transmission lines,
solar energy converters, etc.

The processes of heat and mass transfer by laminar
free convection between horizontal isothermal con-
centric cylinders were studied theoretically [1, 2], by
numerical methods 3, 4] and experimentally [S, 6]. In
the overwhelming majority of the above-mentioned
papers stationary solutions of the problem are sug-
gested ; non-stationary problems were the concern of
refs. [7, 8]. Turbulent free convection in a gap between
horizontal concentric cylinders was considered in ref.
{4]. A very detailed review of the literature on natural
convection in an annulus under various thermal
boundary conditions is given in refs. {7, 9-11].

A conjugate formulation of the problem of free
convection in annuli was studied to a lesser extent in
refs. [11-13]. In ref, [13] a stationary conjugate prob-
lem of natural convection in a gap between a coaxial
hollow cylinder and a cylindrical rod is treated by
asymptotic methods. The mathematical simulation of
three- and two-dimensional conjugate problems of
natural convection and corresponding conjugation
criteria were the concern of refs. [14-16}.

This paper considers the unsteady-state conjugate
heat transfer by natural convection between hori-
zontal coaxial hollow cylinders, comparison is drawn
between similar problems in non-conjugate formu-
lation, a considerable influence of walls on heat trans-
fer in channels is shown.

2. BASIC EQUATIONS AND PARAMETERS OF
THE PROBLEM

Making use of the cylindrical system of coordinates,
assume that the angular coordinate ¢ is measured
from the vertical directed downwards (¢ = 0) and the
problem is symmetric about a vertical plane passing

through the axis of the cylinders {5], therefore, con-
sideration will be confined to the range 0 <P <
(Fig. 1).

Assuming the thermophysical properties of an
incompressible fluid to be constant, consider non-
stationary convection in the space limited by two
coaxial cylindrical tubes.

Equations of heat and mass transfer in the fluid and
tube walls have the form:

continuity equation
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Pr Prandtl number

P fluid pressure

Ra  Rayleigh number, Gr Pr

R dimensionless radial coordinate

¥ radial coordinate

! time

T temperature

u dimensionless radial velocity component,
v

z, radial velocity component

g angular velocity component

NOMENCLATURE

a thermal diffusivity v dimensionless angular velocity
d ratio of thermal diffusivities, 4, /a, component, yr/d,.
b inner cylinder wall thickness
b dimensionless wall thickness of inner Greek symbols

cylinder g coefficient of thermal expansion of fluid
o outer cylinder wall thickness # ratio of radii, r,/r,
¢ dimensionless wall thickness of outer # dimensionless temperature,

cylinder (T—TOT~Ty)
Fo  Fourier number, a,t/r} o thermal conductivity
g gravity acceleration 5 thermal conductivity ratio, A,/4,
Gr,  Grashof number, Bg(T;: — T, )¢ /v? y coefficient of kinematic viscosity
Gr, Bg(T, =T Hrip? r fluid density
Gr Bg(T.~T)r,—r)' v T relaxation parameter
h step of a spatial grid (AR, A¢) @ polar coordinate
Nu  Nusselt number 4 stream {unction
Ny mean Nusselt number W dimensionless stream function, ¥/z-

Subscripts
i mmner cylinder
o outer c¢ylinder
1 wall
2 fluid
k,j  spatial indices of grid nodes
n number of time layer.

Q vorticity
@ dimensionless vorticity, (O fa-.

FiG. I. Channel geometry.

The initial conditions will be assumed as follows:

po=e, =0, T'=T,=T, att=0 {6)

The boundary conditions at the fluid-wall interface
are:

no-slip condition

Ur:Ud):O a'{}’ZE‘iﬁndi‘Z‘n); (7)

conjugation condition

A )

aT, . ¢ ¥,

W = Ay Ty=Ty atr=rn and r = r,.
o or

(8)
It is assumed on the line of symmetry that
o= 0T el
“ T ap de &
On the outer boundaries of the walls the boundary
conditions of the first kind are prescribed

=1

atr=r—4 and T,=T, atr=r +¢

N
with T, > T.,.
On the introduction of the stream function ‘P,
defined by the relations
e 1 ow
P B =T
continuity equation (1) is satisfied identically.
Multiplying equation (3) by r, then performing the
operations (1/r)(8/6¢) and (8/0r} on egquations {2)
and (3), respectively, and substracting one equation

from the other, it is possible to eliminate the pressure
variable. Then the basic equations for the dimen-
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sionless stream function, velocity and’ temperatures
will take the form

o=-Vy 11)

dw ow v _69 PV

Fo T YR T R

80, cos¢ 00
2l sind 2 4 ¥ 2
e
40, 0, wvadb, _,
éﬁ+uﬁ+§a¢—vm (13)
08, )
5, = AV70, (14)

where the dimensionless quantities are introduced

R=rin, o = Qrila,,
Yy =V¥a,, 0=(T-TH(T—T,),
Fo = ayt/r}, u=u.r/as,
v=Uvgrifa,, d=ala,. s

The initial and boundary conditions are written here
as

V=w=0=0,=0 atFo=0 (16)
e _ 90
V=0=%=3 ="

along ¢ = 0,7 (symmetry line) (17)

~00, 00,
01 =0 A5R=%R 1
(inner (18)
Yy=0y/0R=0 atR=1 cylinder)
8,=1 atR=1-b)
~00, 06, 7
0=0: 45 =%r
(outer (19)
Y=0y/0R=0 atR=n cylinder).
#,=0 atR=pn+c J

The boundary condition for vorticity on the walls
will be taken in the form [9, 17]

8%y

—W’ R=1,Y[

(20)

The set of equations (11)—(14) and boundary con-

ditions (16)—(20) incorporate the following dimen-
sionless parameters :

(1) the Prandtl number Pr = v/a,;

(2) the Grashof number Gr, = gf(T; — T, )ri/v?;

(3) the ratio between the thermal conductivities of
the fluid and the wall under the conjugation con-
ditions £ = 1,/4;;

(4) the ratio between the thermal conductivities of
the fluid and the wall in equation (14) d = a,/a,;
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(5) the outer to the inner radius ratio (r,/r;) which
characterizes the size of the gap in the channel
n=rolr;

(6) the relative thickness of the channel walls
b="b'[r,c=C[n.

3. ALGORITHM FOR THE CONJUGATE
PROBLEM SOLUTION

The system of equations (11)—(14) with initial con-
dition (16) and boundary conditions (17)—(20) was
solved numerically by the alternating-direction
method using the implicit finite-difference scheme
[17]. The space grid was selected to be uniform
(A¢ = x/20) in the direction of ¢, while in the r-
direction it was divided into three regions with differ-
ent constant steps. The mesh steps were taken smaller
near the wall than in the centre of the annulus.

The convective terms were approximated by non-
symmetric difference relations with the so-called
‘opposite-to-flow orientation’ [17].

At the boundaries of the region, the first- and
second-order partial derivatives were determined,
when making the approximation towards the centre
region, from the following relations:

of _ =3fut4fi— 1

2 5 +O(h*) 2y
Pf _=1f+8f —f2 3(df 2
5?*”“5?‘—"z<£>ﬁ0“)

(22)
where
n=(¢,R), f=(Wwy,0,0,).

The conditions for the conjugation of the tem-
peratures on the inner and outer cylinders were trans-
formed, respectively, into the difference equations

Lp— L eqkj—er;kj—l - IBij+l_0;kj
1kj 2kj > ARj_l AR/
atR=1
~0% — 0%, 6n.. . 9" .
0% = 0%, 4 ijAR. 2’:1_1 = ”‘""A‘R AT
= J
atR=pn. (23)

The elliptic equation (11) was solved by the time-
dependent technique and therefore the relaxation par-
ameter T was introduced

. AR/
r=mln{A¢}

and equation (11) became parabolic. It was solved by
the alternating-direction method [17]; the factorized
terms in the directions R and ¢ were closed by equa-
tions (21) and (22), respectively. Iterations on any
time step stop after the following convergence cri-
terion is satisfied :

(24
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s+ 1 5
Yl -yl <1073,

(25)

/ 3 ‘Vz,-

The number of iterations decreased rapidly from 25
to 30 at the initial instants of time to 24 with the
steady-state regime being approached. Depending on
the numbers Pr, Gr and #, each interval of time steps
constitutes from 200 to 300. During the successive
solution of equations (11) and (12) the residual in the
boundary nodes was eliminated following the numeri-
cal scheme in ref. [18]. At the prescribed Gr, Pr, y, Z,
d, b, ¢ and initial distributions of 6., 6,, ¥, w, u
and v, calculations on one time step incorporate the
following operations: first, equations (11)—(14) are
solved successively by the above-mentioned method :
then from equations (10) the velocity field is found in
terms of central differences, and from (3, 10]

Nut, = In (n) [%%]

00,
Nuo = —r[ln(r]) EE X
=y

the local Nusselt numbers are determined for the sur-
faces of the inner and outer cylinders, respectively,
and, finally, with the aid of the expressions

(26)

o 1 (™ o 1 (™
Nu;, = J Nu,do, Nu, = nj Nu,d¢ (27)

T Jo 0

mean Nusselt numbers are calculated for each cylin-
der. The integrals indicated were found numerically
using the Simpson rule. The total Nusselt number Nu
was determined as the arithmetic mean of Nu, and
Nu,.

The transitions from the solution of the conjugate
to a non-conjugate problem in the method considered
was made by the limiting transition

s —0.

Moreover, a separate programme was used for solving
non-conjugate problems to check the computation.

4. BASIC RESULTS. COMPARISON BETWEEN
CONJUGATE AND NON-CONJUGATE
PROBLEMS

In order to reveal the effect of channel walls on heat
transfer and to compare the solutions of conjugate
and non-conjugate problems and also to verify the
reliability of a numerical algorithm, calculations were
made for the following variants convenient for com-
parison with earlier works [1, 3, 10]: (1) Pr=
002, =5, Gry=200; (2) Pr=07, n=157,
Ra; = 14420; (3) Pr=0.7: (a) n = 1.5, Gr = 4850;
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F1G. 2. Stream lines for the non-conjugate (a) and conjugate
(b) problems, respectively.

8.0

4.0

-2.0

-4.0

-6.0-

Fi1G. 3. Radial velocity component : — ~- -, conjugate prob-
lem; — , non-conjugate problem.

(b) =2, Gr=10000; (c) n =2, Gr =26600: (d)
n =2, Gr = 38 800.

For the above parameters equations (11)—(14) were
solved in both conjugate and non-conjugate for-
mulations. The analysis of the results showed that
with 4 — 0 these solutions coincided. Moreover, the
temperature profiles, just as the flow structure, which
were found from the solutions obtained, turned to be
identical in character with the results of refs. [1, 3, 10].
The greatest discrepancy was found when comparing
with the solution obtained in ref. 3], for local Nusselt
numbers near the regions ¢ = 0° and 180°, it did not
exceed 12%. This difference is due to the fact that at
Grashof numbers close to transient ones, condition
(25) does not furnish the estimation of the real error
when solving the Poisson equation. Thus, a conjugate
problem was solved with the parameters: Pr = 0.7,
Gr; = 10000, =2,d=2.0,4=04,b = ¢ =0.2.The
data on hydrodynamics (Figs. 2-4) and heat transfer
(Figs. 5-9) resulting from the solution of this problem,
were then compared with the corresponding solution
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Fio. 4. Angular velocity component: ———, conjugate
problem ; , non-conjugate problem.

()| (a)

Fie. 5. Predicted isotherms for the non-conjugate (a) and
conjugate (b} problems, respectively: 1, =09:2,08; 3,
07:4,06;504;6,03;7,01

of this very problem in a non-conjugate formulation.
Below, an analysis and comparison are made of the
probiem solution in conjugate and non-conjugate
formulations.

The measure of the motion intensity of an incom-
pressible fluid is provided by the maximum absolute
value of the stream function, with other conditions
remaining constant. Making use of this criterion it
can be seen from Fig,. 2 that the fluid motion intensity
found from the non-conjugate problem solution
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Fic. 6. Local Nusselt numbers: ——--, conjugate prob-
lem; , non-conjugate problem.

exceeds the analogous characteristics of the conjugate
problem by a factor of 1.39. In this case the vortex
centre in the conjugate problem shifted upwards by
Ag ~ 6° with respect to the voriex centre in the non-
conjugate problem. Figures 3 and 4 contain com-
parison between the radial and angular velocity com-
ponents in the sections ¢ = 54°, 108° and 154°. It is
seen from the figure that allowing for the thermal
conductivity of the channel walls reduces the angular
and radial velocities of the fluid non-uniformly over
the entire channel. Thus, in the fluid layer adjacent to
the inner cylinder the greatest differences in the velo~
city v are observed in the lower portion of the annulus
{0° < ¢ = 140°), and conversely, in the fluid layer at
the opposite wall—in the upper portion of the channel
(75° < ¢ < 180°).

A comparison of the heat transfer data is given
in Figs. 5-9, The transference of thermal boundary
conditions from the inner to the outer surfaces of the
channel walls in the conjugate problem led to the
redistribution of isotherms in the channel (Fig. 5)
and, naturally, to a change in the distribution of iocal
Nusselt numbers on both walls (Fig. 6). On the inner
cylinder (Fig, 6), within the range 140° < ¢ < 180°,
the local Nusselt numbers Ny, for the conjugate and
non-conjugate problems nearly coincide and differ
insignificantly ; with a decrease of ¢ from 140° to 0°
the difference between them progressively increases
and at ¢ = 0° they differ by 70%. The reverse is true
for the case on the outer cylinder: over the portion
0° < ¢ < 75° they differ slightly, whereas with an
increase of ¢ from 75° to 180° the disagreement
becomes increasingly pronounced. In Figs. 7{a} and
(b) the temperature distributions along the radii are
presented for the non-conjugate and conjugate prob-
lems, respectively. These graphs show that the course
of the temperature curves and their slope to the axes
R and @ differ greatly for both problems within the
ranges 1 € R < 1.2and 1.8 < R < 2.0. Moreover, the
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F1G. 7. Temperature distribution along a radius for the non-conjugate (a) and conjugate (b} problems,

respectively: 1, 0%, 2, 72°; 3, 90°;

2
0.8
8 oep
<>w
0.2k
|
| L I I
o 36 72 108 142
¢ {deg)

Fic. 8. Temperature distribution over the interfaces between
the walls and the fluid for inner (1) and outer (2) cylinders,
respectively.

flattened portions of the curves ¢ = 126°, 144° and
180° of the non-conjugate problem are located above
the analogous curves of the conjugate problem, while
for the curves ¢ = 90°, 72° and 0° the reverse phenom-
enon is observed. Figure 8 illustrates the distribution
of the temperature 8, found from the conjugate prob-
lem solution, along the interface surface between the
fluid and the inner and outer cylinders. It is seen that
while within the range 35° < ¢ < 160° both curves
have nearly the same angles of inclination to the axes

4, 108°; 5, 126°; 6, 144°: 7, 180°.

FiG. 9. Time dependence of the mean numbers N and

Nu, for the non-conjugate (1) and conjugate (2) problems,
respectively.

¢ and 0, then near the regions ¢ = 07 and 180° these
angles differ greatly.

Figure 9 shows the time history of mean Nusselt
numbers on both channel walls. The data on the
steady-state heat transfer regimes makes it possible
to assert that allowance for the finite thickness of the
channel walls and conjugation of temperature fields
at the fluid—wall interface led to a decrease of Nu by a
factor of 1.42. Moreover, the curve Nu,(Fo) for the
conjugate problem in contrast to the non-conjugate
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one has a maximum point and tends to zero as
Fo-0.

5. CONCLUSIONS

The problem of conjugate unsteady-state natural
convection in a gap between horizontal coaxial cylin-
drical tubes is solved using an implicit scheme by a
numerical method based on the factorization for w, ¥
and 8 successively along the radius R and then over
the angle ¢. The numerical solution makes it possible
to analyse in detail the patterns of stream lines and
isotherms in the fluid and also the course of isotherms
in channel walls. The applied numerical method can
be extended to the problems of unsteady-state free
convection with different thermal boundary con-
ditions on the channel walls with different geometrical
relationships.

The above calculations show that taking into
account the channel wall greatly affects the natural
convection heat transfer.

The study of the influence of such parameters as 1,
&, b and ¢ on the solution of the conjugate problem
of natural convection in an annulus was made earlier
in ref. [19].
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TRANSFERT THERMIQUE CONJUGUE DE CONVECTION LIBRE VARIABLE DANS
DES ESPACES ANNULAIRES HORIZONTAUX

Résumé~—On résout un probléme conjugué de convection naturelle dans un espace annulaire horizontal.
Une comparaison avec la solution du probléme non conjugué est donnée. On montre les effets de paroi
sur le transfert thermique.

INSTATIONARER KONJUGIERTER WARMEUBERGANG DURCH FREIE
KONVEKTION IN WAAGERECHTEN KOAXIALEN ZYLINDRISCHEN KANALEN

Zusammenfassung—FEin konjugiertes Problem der natiirlichen Konvektion in einem waagerechten
Ringraum wird numerisch untersucht. Die Losung wird mit derjenigen fiir den nicht-konjugierten Fall
verglichen. Der Wandeffekt auf den Warmetibergang in einem Kanal wird gezeigt.
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HECTALIMOHAPHbBI{ COTIPSXXEHHBIY TEILIONEPEHOC ECTECTBEHHOW
KOHBEKLIVIE B 'OPH3OHTAJIBHBIX LIMIMHAPUYECKHUX KOAKCHAJTBHBIX
KAHAJAX

Ammoramus—HucneHno PpelicHa CONPSKEHHAR 3ajava ECTECTBEHHON KOHBEKHUM B TOPH3IOHTAIBHOM
KOJBUCBOM 3a30p¢, NPHBCHHLI CONOCTABJICHHA pemeﬂnﬂ ¢ BOCONDHKCHHBIMH 3anavaMH, MoKaslano
BJIMAHNE CTCHOK Ha TCIUIOOTHAMY B KaHaJe.



